If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7k^2+3k-2=0
a = 7; b = 3; c = -2;
Δ = b2-4ac
Δ = 32-4·7·(-2)
Δ = 65
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{65}}{2*7}=\frac{-3-\sqrt{65}}{14} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{65}}{2*7}=\frac{-3+\sqrt{65}}{14} $
| -4(x+5)+3x-1=13 | | 3(2y+1)=-2(3y+4) | | 2x−3=−5 | | 26=7x-11 | | 331=16x | | 5(−2x−4)−2x+2=-42 | | 7x+10=3x+120=3x+84 | | x+14=–4 | | 2,5x+12=2,75x+3 | | 8000=12000xx5 | | y–14=–4 | | 3.2x=–9.6 | | 12÷h=36A.3 | | 15=3(x-3( | | 7y-10=125 | | 5.6–x=4.2 | | 2-2x-20-4x=3x | | p+3-2=0 | | b+46=281 | | 1/5e=-6 | | b-46=281 | | 3x+5-6x=13 | | 1.2x+3.6=2.4x+60* | | q+37=111 | | q-37=111 | | 4(5x+10)=28x | | 0=(5s)-(100+2s) | | x(x+8)=x+30 | | X2+7x+21=0 | | 9x+5x=90 | | 5x^2-7x=3x | | |v+8|=2 |